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In the simplest case o, = rw/a, when ¢, = ¢,» = 1 [2] and the

residue of F(w) for v = «, is equal
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Using (27) the potential distribution is calculated and compared
to the results of [2] and exact solution [11]. The coincidence is
excellent with exact solution as seen from Fig. 2. Note that all
results are obtained when
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V. CONCLUSION

The described method is quite effective. It allows one to solve
the problems practically in closed form and to realize all the re-
quired calculations using small computers only. The most interest-
ing diffraction problems solved by this method are: a thick semi-
infinite plate [3], infinite periodic corrugated structure [4], echelett

1979

[5] and other structures as presented in {6]-[10]. Analytical expres-
sions for all mentioned cases were obtained.
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Optimal Microwave Source Distributions for Heating
Off-Center Tumors in Spheres of High Water
Content Tissue

Carey M. Rappaport and Jorge G. Pereira

Abstraci—A surface distribution of electric dipoles can be used to
represent a multi-element microwave hyperthermia applicator for non-
invasive heating of off-center targets within a spherical high-water-
content tissue volume—such as the head. This paper presents a method
for finding the optimal surface distributions for delivering maximum
power for arbitrarily located deep tumors in such a uniform spherical
volume. The resulting focused power dissipation pattern for any tumor
location has a global maximum at the tumor, and also is the largest
spherical volume for which no healthy tissue is overheated. The opti-
mization uses spherical field harmonics, centered at the tumor target,
summed with suitable complex weights to iteratively minimize surface
power. Once the best field distributions are derived, the current sources
which generate these distributions are determined. The resulting ex-
citations represent the theoretically ideal spherical microwave hy-
perthermia configuration for which no physical applicator system can
surpass.

INTRODUCTION

A major advantage of electromagnetic hyperthermia is the ability
to control constructive and destructive interference in locations re-
moved from the antenna applicator. Ideally, focusing power on a
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deep tumor selectively heats 1t to temperatures high enough to kill
cancerous cells without overheating and harming surrounding
healthy tissue.

This work extends the analytical framework used to study field
focusing within a high-water-content biological tissue volume.
Other studies of explicitly focused electromagnetic sources suggest
means to increase power density at a deep focal point [1]-[3], but
not to above surface levels—and hence do not present a therapeu-
tically beneficial heating scheme. A practical electromagnetic ap-
plicator must have a three-dimensional global maximum at the tu-
mor.

In previously reported studies [4], [5]. the optimal field distri-
bution for heating a tumor at the center of a biological sphere was
derived. These studies present the spherical optimization method
of using higher order spherical modes—which have zero field in
the center—to cancel the first order mode field maxima on the
sphere’s surface. The first order completely determines the field at
the center, while these higher order modes destructively interfere
to make the field at the surface almost uniform. Thus, for a given
radius sphere, the volume field distribution with the greatest ratio
of target field to surface field can be found. The sphere radius is
then increased and optimization repeated until the field amplitudes
of the target aimost equals those of the surface. This radsus repre-
sents the largest spherical volume with a global power maximum
at its center, and hence the deepest tumor which can be electro-
magnetically heated safely and efficiently.

It is also shown in these previous studies that 915 MHz is the
best standard (ISM) frequency for deep heating with appreciable
resolution. The maximum sphere radius at 915 MHz is 9.45 cm.
For higher frequencies the deposited power pattern resolution at
the target is greater—and the attenuation-to-propagation ratio is
smaller—but since the attenuation is exponential, while the illu-
minating aperture grows only quadrically with aperture area, the
shorter wavelength limits the maximum sphere radius. For much
lower frequencies (i.e. 100 MHz) the largest sphere is larger than
for 915 MHz, but the smaller electrical aperture leads to less con-
structive interference, with poorly resolved focal spots. At such
low frequencies, focusing makes very little difference on the power
pattern.

A similar iterative, two-step field shaping technique is used in
this study for a non-symmetrical geometry, with a tumor centered
(without loss of generality) at an eccentric target point on the polar
axis. The optimal total field inside the irradiated sphere of muscle
tissue is then parameterized in terms of complex modal coefficients
which can be used to specify a surface current and dipole distri-
bution. The present study finds the z-polarized focal field maximum
in terms of a polar source distribution function.

An alternative, orthogonal polarized focal field can be derived
in terms of just the azimuthal modes (each of which is orthogonal
to the polar modes). However, the field distribution for either po-
larization 1s dominated by the radial dependence of the spherical
Bessel functions, with higher order modes canceling the funda-
mental focal mode n similar ways. The azimuthal optimum fo-
cused field has almost the same maximum radius. It will be de-
scribed in a subsequent paper.

PrRINCIPLES OF MODAL FIELD OPTIMIZATION

We consider a sphere of uniform biological tissue which is cen-
tered at the origin of a primary rectangular coordinate system and
excited at 915 MHz. Muscle tissue, which is used as the typical
high-water-content biological medium. has measured wave number
[6} « = 2w /N) (1 — j0.23), and wavelength A = 4.5 cm. It is
assumed that the focal target is on the z-axis, at some fraction of
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the sphere radius from its center. Using the same principle as for
the centered target, the electric field is written as a sum of spherical
harmonics. In this eccentric case however, in order to isolate a
single mode as the only non-zero contribution to power at the tar-
get, the harmonics must be specified in terms of auxiliary translated
coordinates, centered at the target. This geometry, with auxiliary
frame of reference identified with primed coordinates is shown in
Fig. 1.

Taking into account the azimuthal symmetry of this heating
problem, the electric field is given by:
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where P, and j, are the nth order Legendre and Bessel functions,
respectively, and B, are the nth complex weighting coefficients.
Equation (1) indicates that for surface field points where the radial
coordinate is large, the § component contribution to deposited
power (proportional to |E|?) is dominant. Also, using the asymp-
totic approximation for the spherical Bessel function for small ra-
dial arguments, j,(kr) ~ (k")"/1+3 -5+ (2n + 1), to evaluate
the electric field at the focus r’ = 0, gives |E(F)\,r=0 =2/3 By,
with contribution from only the first mode. Fig. 2 shows the am-
plitude of the first mode (n = 1) of the electric field in a cross
section through the poles of the sphere for a target at z = 0.6R, R
= 7.7 ¢m. Note that the field maximum occurs at the eccentric
target, and that the highest field levels are on the sphere surface
farthest from the target.

Appropriate higher order modes, n = 2, 3,4, - - -, can now be
added to the first mode to reduce the harmful single mode surface
field without altering the field value at the hot spot tumor target.
In the sécondary frame of reference E, of (1) is separated into the
product of a polar dependent part and a radially dependent part,
given by C, = B,[j, _(kr') — (n/«kr")j,(xr")]. Since « is complex,
C, is complex; its phase solely determines the phase of E,. On the
surface of the tissue sphere (r = R) the relationship between sec-
ondary coordinate radius and primary polar angle can be cast in
terms of the target point f, as

r'(@y = —fcos @ + \/f2 cos’ @ — f* + R™. 2)

The field synthesis involves N higher order modes with coefficients
B,, and 2N real optimization variables. However, if the phase
variation of cach mode coefficient is similar to that of the first mode,
only the mode amplitudes would need to be adjusted. Choosing the
constant phase offset for each mode which sets all modal fields to
be purely real and positive at the polar angle where the first mode
amplitude peaks, yields the modal phase variations shown in Fig.
3 for the f = 0.6R case. In the vicinity of the polar coordinate § =
6, = 0.64x, the phases of all the modes are almost independent of
mode order (except for the constant offset). The phase difference
between the modes is not insignificant for polar locations far from
the zero-phase polar angle, however Fig. 1 indicates that the am-
plitude of the first mode distribution at these angles is much smaller
than at the zero-phase angle. Since the algorithm is designed to
lower field levels below a given threshold level, the high phase
differences shown in Fig. 3 does not compromise the efficiency of
the algorithm.

Writing the #-component of each mode of (1) in magnitude/phase
form, E,, = |B,|e/ ™"~ *Epr 61/ vields total field mag-
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- Fig. 2. E-field intensity of the first off-center spherical harmonic, centered
at z = 0.6R, as a function of position (o, z). (a) Contour plot. (b) Surface
plot.
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Near the first mode surface power peak, 8’ = 04, r = R, ®,(0') —
®,(00) = ($,(0") — ®,(8)), implying that the phase-shifted higher
order modes have very little phase dependence on polar angle, and
the optimization proceeds assuming they are purely real. As such,
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Fig. 3. Phase as a function of polar angle for each of the first 6 modes,
with the phase at § = .64« subtracted.

the optimization is linear with respect to |B,| and only N — 1 vari-
ables need be found. The reduction is implemented by the politope
method [7], using a computer routine [8] which minimizes the area
defined by the surface field curve above a given threshold setting.
After several iterations of extending the sphere radius R and then
suppressing surface power levels to that of the focal point, the fol-
lowing optimal six-mode ensemble was found which heat the target
tumor at 0.6R in a high water content, 12-cm radius sphere with
relatively uniform surface fields: B, = 1.5¢/>'%8 0.834¢/03%,
0.288¢/' 7%, 0.132¢/%7%%, 0.105¢/°%%, 0.071e/'*7. These excita-
tion coeflicients constitute an optimum since at the 12-cm radius
no additional higher order modes could be added to appreciably
lower the surface power. The optimized field profile for the sphere
half cross-section is presented in Fig. 4. Harmonic translation for-
mulations given in [8] can be employed to cast the optimal modal
coefficients in the primary frame of reference as follows:

E(F) = L A;[FEq(r. 8) + OEu(r. 0)] 3

where E,, and £, are similar to (1), and the first six coefficients
are: A, = 1.187¢/2%75, 1.295¢/24  (0.7134¢/22%3, 0.416¢/*'%,
0.356¢/" %%, 0.238¢/!°7",

SPECIFICATION OF THE SURFACE DISTRIBUTION

The applicator current sources which generate the required field
distribution as closely as possible are now derivéd. This distribu-
tion can be modeled as a charge double layer (which yields a dis-
continuous tangential component of the electric field) and the usual
surface current. The symmetry of the problem suggests that the
source distribution is independent of ¢ and has po ¢ component.
Thus, the current source can be given as: .

RN N R
J = 23 IF,(0) + 0F, @010 — R) e
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Fig. 4. Optimal multi-mode E-field profile for focal target at 0.6R,,,,,, Ruax
= 12.0 cm. (a) Contour plot. (b) Surface plot.

where N is the total number of modes and R is the constant radius
of the sphere of muscle tissue. The functions F,,(0) and Fy,(8) in
(4) are determined from application of the boundary conditions at
the surface of the sphere [9]. Using the formula for charge conti-
nuity V - J = —jwp gives the charge at the spherical surface:

dF,
2F, + d{;’" + F,, cot 8

0 = (5

¥

and
1

Pr = T Fm (6)

Jjo

and p = 0,6(r — R) — pé'(r — R) and singularities have been
matched. Here o, is the surface charge and py is the double layer
amplitude.

The E-fields irside the sphere are given by (3). The H-fields have
the form:

dP,(cos 0)

do M

I:} = Ad;‘]if;jn(’(——r)
n

The fields outside have the same form with the spherical Bessel

functions j,(x~7) replaced by the outgoing spherical Hankel func-

tion n® (x*r) (assuming ¢’ time dependence). The modal coeffi-

cients A, and A, as well as the wave numbers «~, ™ and imped-

ances 4, 7" indicate modes inside and outside the sphere,
respectively.

Two boundary conditions at the sphere surface are needed to

specify A, in terms of the A, given in (3). Ampere’s Law gives
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the tangential H-field condition, which using (4) and (7) gives

P 0 i (k"R B
jd n;ceos ){A”_JW(K_ ) _ gt ('i R)] ®

The differential form of Gauss’s Law with the double-layer sin-
gularity is multiplied by r — ' and integrated from r~ to r™ and
across a differential element of surface area, and then converted to
scalar and vector potential form and eventually gives the tangential
E-field condition [10] in terms of the surface gradient of the double

Fﬂn = -

layer amplitude: ¢ "Ej — ¢ Ey = —Vypy. Integrating with
respect to 6 using (3) and (6) gives
d ok~ hP (k"
P = jP, (cos ) = [A; Bk D _ ga Tale D ©
dr 1 r=R

Now (8) and (9) are substituted into the differential equation (5),
and since it is assumed that there are no perfect conductors in the
given geometry, there is no net surface charge, o, = 0. The re-
sulting equation uses a Legendre function recurrence relation [11]
to eliminate the § dependence. Solving for the remaining unknown
results in

At =4 £ nin ~ 1)j(«"R) + 2k"Rj,_ (x"R)

" 7" nn — DEP&TR) + 2«"REY. (kT R)

(12)

Each individual modal oscillation is associated with its own surface
source distribution which follows from (4) using (8) and (9) with
everything specified in terms of A, given in (3). The equivalent
current density representing the applicator can be modeled as the
superposition of all individual modal source distributions.

It must be emphasized that this optimization procedure provides
a theoretical limit for deep heating. In practice, no actual applicator
would be able to generate as good a power pattern, We have pre-
sented instead a ‘‘benchmark’’ for judging electromagnetic hy-
perthermia feasibility. Just as with thermodynamic efficiency
cycles, knowledge of ideal heating limits provides essential infor-
mation for designing practical medical treatment devices.
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