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Fig. 2. The potential distribution atx ~ aj, a2 = al /~, L/a =
=63=1,

l-t

l,e,

V3m(rJ) =,,~, (1 + tial/rn7r)(l – oxsz/rrt7r)(l – ma3/rn7r)

Due to the expression

F(u) = –
al sin (CM@ sin (ma3)A3~(co)——

0? sin (tial)aza~ V3M(LJ)

M

II (1 –wza~/rn27rz)/(1 –o)2/c&l)
,n=l

.—
05

(II 1+
w2a2a3

)
e—““

M=l rrnr(mr + ~al)

[5] and other structures as presented in [6]-[ 10]. Analytical expres-

sionsfor all mentioned cases were obtained.
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Optimal Microwave Source Distributions for Healing
Off-Center Tumors in Spheres of High Water

Content Tissue

In the simplest case ci.l = rZT/al when ~,1 = 6,2 = 1 [2] and the

residue of F(o) for co = an, is equal

,, sin (n7ra1/al) sin (n7ra3/al) .43~(rz~/al)
RF(%1) = (– 1) ~nTa2,a3)

(r3ma3/al) V3~(s-tm/al) /

(27)

Using (27) the potential distribution is calculated and compared

to the results of [2] and exact solution [1 1]. The coincidence is

excellent with exact solution as seen from Fig. 2. Note that all

results are obtained when

~3A~~/al) = 1 – (rsa2/al) cth (mL/(2az))

V,~(mr/al) 1 – (na2/a,)
(28)

Carey M. Rappaport and Jorge G. Pereira
(26)

V. CONCLUSION

The described method is quite effective. It allows one to solve

the problems practically in closed form and to realize all the re-

quired calculations using small computers only. The most interest-

ing diffraction problems solved by this method are: a thick semi-

infinite plate [3], infinite periodic corrugated structure [4], echelett

Abstract—A surface distribution of electric dipoles can be used to

represent a multi-element microwave hypertbermia applicator for non-

invasive heating of off-center targets within a spherical high-water-
content tissue volume—such as tbe head. This paper presents a mctbod

for finding the optimal surface distributions for delivering maximum
power for arbitrarily located deep tumors in snch a uniform spherical
volume. The resulting focused power dissi~a~ion pattern for any tumor

location has a global maximum at the tumor? and also is the largest
spherical volume for which no healthy tissue is overbeatpd. The opti-

mization uses spherical field harmonics, ce@ered at the tumor target,
summed with suitable complex weights to iteratively minimize surface
power. Once the best field distributions are derived, the current sources
which generate these distributions are determined. The resulting ex-

citations represent the theoretically ideal spherical microwave hy -
pertbermia configuration for which no physical applicator system can
surpass.

INTRODUCTION

A major advantage of electromagnetic hyperthermia is the ability

to control constructive and destructive interference in locations re-

moved from the antenna applicator. Ideally, focusing power on a
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deep tumor selectively heats It to temperatures high enough to kill

cancerous cells without overheating and harming surrounding

healthy tissue.

This work extends theanalytical framework used to study field

focusing within a high-water-content biological tissue volume.

Other studies of explicitly focused electromagnetic sources suggest

means to increase power density at adeep focal point [1]–[3], but

not to above surface levels—and hence do not present a therapeu-

tically beneficial heating scheme. A practical electromagnetic ap-

plicator must have a three-dimensional global maximum at the tu-

mor.

In previously reported studies [4], [5], the optimal field distri-

bution for heating a tumor at the center of a biological sphere was

derived. These studies present the spherical optimization method

of using higher order spherical modes—which have zero field in

the center—to cancel the first order mode field maxima on the

sphere’s surface. The first order completely determines the field at

the center, while these higher order modes destructively interfere

to make the field at the surface almost uniform. Thus, for a given

radius sphere, the volume field distribution with the greatest ratio

of target field to surface field can be found. The sphere radius is

then increased and optimization repeated until the field amplitudes

of the target almost equals those of the surface. This radms repre-

sents the largest spherical volume with a global power maximum

at its center, and hence the deepest tumor which can be electro-

magnetically heated safely and efficiently.

It is also shown in these previous studies that 915 MHz is the

best standard (ISM) frequency for deep heating with appreciable

resolution. The maximum sphere radius at 915 MHz is 9.45 cm.

For higher frequencies the deposited power pattern resolution at

the target is greater—and the attenuation-to-propagation ratio is

smaller—but since the attenuation is exponential, while the illu-

minating aperture grows only quadrically with aperture area, the

shorter wavelength limits tbe maximum sphere radius. For much

lower frequencies (i.e. 100 MHz) the largest sphere is larger than

for 915 MHz, but the smaller electrical aperture leads to less con-

structive interference, with poorly resolved focal spots. At such

low frequencies, focusing makes very little difference on the power

pattern.

A similar iteratwe, two-step field shaping technique is used in

this study for a non-symmetrical geometry, with a tumor centered

(without loss of generality) at an eccentric target point on the polar

axis. The optimal total field inside the irradiated sphere of muscle

tissue is then parameterized in terms of complex modal coefficients

which can be used to specify a surface current and dipole distri-

bution. The present study finds the z-polarized focal field maximum

in terms of a polar source distribution function.

An alternative, orthogonal polarlzed focal field can be derived

in terms of just the azimuthal modes (each of which is orthogonal

to the polar modes). However, the field distribution for either po-

larization M dominated by the mdlal dependence of the spherical

Bessel functions, with higher order modes canceling the funda-

mental focal mode m similar ways. The azimuthal optimum fo-

cused field has almost the same maximum radius. It will be de-

scribed in a subsequent paper.

PRINCIPLES OF MODAL FIELD OPTIMIZATION

We consider a sphere of uniform biological tissue which is cen-

tered at the origin of a primary rectangular coordinate system and

excited at 915 MHz. Muscle tissue, which is used as the typical

high-water-content biological medium, has measured wave number

[6] K = (27r/k)(l – jO.23), and wavelength X = 4.5 cm. It is

assumed that the focal target is on the z-axis, at some fraction of

the sphere radius from its center. Using the same principle as for

the centered target, the electric field is written as a sum of spherical

harmonics. In this eccentric case however, in order to isolate a

single mode as the only non-zero contribution to power at the tar-

get, the harmonics must be specified in terms of auxiliary translated

coordinates, centered at the target. This geometry, with auxilia~

frame of reference identified with primed coordinates is shown in

Fig. 1.

Taking into account the azimuthal symmetry of this heating

problem, the electric field is given by:

m not + 1)
E(F) = x ?Bn ~r, Jn(Kr’ )P. (Cos 0’)

n=f

[
+ ;Bn jH_l(Kr’) – ;J,r(Kr’) 1
X [n cos O’Pn(cos 0’) – rzP,, _ ,(cos 0’)] & (1)

where P,, and j. are the nth order Legendre and Bessel functions,

respectively, and B,, are the nth complex weighting coefficients.

Equation (1) indicates that for surface field points where the radial

coordinate is large, the40 component contribution to deposited

power (proportional to IE 12, is dominant. Also, using the asymp-

totic approximation for the spherical Bessel function for small ra-

dial arguments, j,l(Kr) – (Kr)”/ 1 03 “ 5.. + (2n + 1), to evaluate

the electric field at the focus r’ = O, gives IJ?(7)I, =0 = 2/3 Bi,

with contribution from only the first mode. Fig. 2 shows the am-

plitude of the first mode (n = 1) of the electric field in a cross

section through the poles of the sphere for a target at z = 0.6R, R

= 7.7 cm. Note that the field maximum occurs at the eccentric

target, and that the highest field levels are on the sphere surface

farthest from the target.

Appropriate higher order modes, n = 2, 3, 4, . . . , can now be

added to the first mode to reduce the harmful single mode surface

field without altering the field value at the hot spot tttmor target.

In the secondary frame of reference -& of (1) is separated into the

product of a polar dependent part and a radially dependent part,

given by C,l = B,,[j,, _, (Kr’) – (n/Kr ‘)jH(Kr ‘)]. Since K is complex,

C,l is complex; its phase solely determines the phase of Eo. On the

surface of the tissue sphere (r = R) the relationship between sec-

ondary coordinate radius and primary polar angle can be cast in

terms of the target point ~, as

r’(0) = –fcos 0 + df2 COS2(3 – fz + R2. (2)

The field synthesis involves N higher order modes with coefficients

B., and 2N real optimization variables. However, if the phase

variation of each mode coefficient is similar to that of the first mode,

only the mode amplitudes would need to be adjusted. Choosing the

constant phase offset for each mode which sets all modal fields to

be purely real and positive at the polar angle where the first mode

amplitude peaks, yields the modal phase variations shown in Fig.

3 for the~ = 0.6R case. In the vicinity of the polar coordinate O =

190= 0.64T, the phases of all the modes are almost independent of

mode order (except for the constant offset). The phase difference

between the modes is not insignificant for polar locations far from

the zero-phase polar angle, however Fig. 1 indicates that the am-

plitude of the first mode distribution at these angles is much smaller

than at the zero-phase angle. Since the algorithm is designed to

lower field levels below a given threshold level, the high phase

differences shown in Fig. 3 does not compromise the efficiency of

the algorithm.

Writing the &component of each mode of (1) in magnitude/phase

form, E~,, = lB,, \e~(~((4’,) ‘W6JJM,I(0 ))eJ@,[8’1 yields total field mag -
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Fig. 1. Spherical eccentric field focusing geometry
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Fig. 2. E-field intensity of the first off-center spherical harmonic, centered
at z = O.6R, as a function of position (O, z). (a) Contour plot. (b) Surface

plot .
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Near the first mode surface power peak, 6’ = 0 ~, r = R, @n(O’) –

@n(O&)= (@l(O’) – @l(O~)), implying that the phase-shifted higher

order modes have very little phase dependence on polar angle, and

the optimization proceeds assuming they are purely real, As such,
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Fig. 3. Phase as a function of polar angle for each of the first 6 modes,

with the phase at .9 = 64rr subtracted,

the optimization is linear with respect to Ill Hland only N – 1 vari-

ables need be found. The reduction is implemented by the polit ope

method [7], using a computer routine [8] which minimizes the area

defined by the surface field curve above a given threshold setting.

After several iterations of extending the sphere radius R and then

suppressing surface power levels to that of the focal point, the fol-

lowing optimal six-mode ensemble was found which heat the target

tumor at 0.6R in a high water content, 12-cm radius sphere with

relatively uniform surface fields: B,l = 1.5eJ2 ‘5X, O.834eJ0326,

0.288 ej’598, O. 132e~2726, O. 105ej053, 0.071 eJ1473. These excita-

tion coefficients constitute an optimum since at the 12-cm radius

no additional higher order modes could be added to appreciably

lower the surface power. The optimized field profile for the sphere

half cross-section is presented in Fig. 4. Harmonic translation for-

mulations given in [8] can be employed to cast the optimal modal

coefficients in the primary frame of reference as follows:

E(7)= j, A,; [tE,.(r, 0) + i9L?0.(r, O)] (3)

where E,. and EO,,are similar to (1), and the first six coefficients

are: A .– = 1. 187ej2c75, 1.295e/2”44s, 0.7134 eJ2293, (),41 (jeJ7 143,

0.356 eJ’839, 0.238 ej’’67’.

SPECIIVCATION OF THE SURFACE DISTRIBUTION

The applicator current sources which generate the required field

distribution as closely as possible are now deriv~d. This distribu-

tion can be modeled as a charge double layer (which yields a dis-

continuous tangential component of the electric field) and the usual

surface current. The symmetry of the problem suggests that the

source distribution is independent of q5and has PO ~ component.

Thus, the current source can be given as:

iv

~ = ~~, [W,.(t)) + jF8fl@)]8(r – R) (4)
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Fig. 4, Optimal multi-mode E-field profile for focal target at 0.6R,n,X, R,,,.x
= 12.0 cm. (a) Contour plot. (b) Surface plot.

where N k the total number of modes and R is the constant radius

of the sphere of muscle tissue. The functions F,.(6’) and FOH(19)in

(4) are determined from application of the boundary conditions at

the surface of the sphere [9]. Using the formula for charge conti-

nuity V . ~ = –jcop gives the charge at the spherical surface:

and

(5)

(6)

and p = u,,r3(r — R) — PE6 ‘(r — R) and singularities have been

matched. Here u,, is the surface charge and pz is the double layer

amplitude.

The E-fields iriside the sphere are given by (3). The H-fields have

the form:

(7)

The fields outside have the same form with the spherical Bessel

functions jn(K - r) replaced by the outgoing spherical Hankel func-

tion h \z) (K+r) (assuming eJ.C ~ime dependence).The modal coeffi-

cients A ~ and A,: as welI as the wave numbers K“, K+ and imped-

ances v –, q + indicate modes inside and outside the sphere,

respectively.

Two boundary conditions at the sphere surface are needed to
specify A ~ in terms of the A; given in (3). Ampere’s Law gives

the tangential H-field condition, which using (4) and (7) gives

dPH (COS 0)

[

~ - jn(K-R) _ ~+ lt~2)(K+R)
F8,1 = – j do ,1 1 (8)

v- n T+

The differential form of Gauss’s Law with the double-layer sin-

gularity is multiplied by r – r‘ and integrated from r- to r+ and

across a differential element of surface area, and then converted to

scalar and vector potential form and eventually gives the tangential

E-field condition [10] in terms ~f the surface gradient of the double

layer amplitude: e ‘~~ – e ‘E; = – Vxpr. Integrating with

respect to 6’ using (3) and (6) gives

Now (8) and (9) are substituted into the differential equation (5),

and since it is assumed that there are no perfect conductors in the

given geometry, there is no net surface charge, u, = O. The re-

sulting equation uses a Legendre function recurrence relation [11]

to eliminate the O dependence. Solving for the remaining unknown

results in

/f; =A-d rz(?t – l)j,z(ti-R) + 2K-Rj. - ,(K-R)
(12)

n q- rt(rz – l)h$2)(K+R) + 2K+Rhf~~ ,(K+R)

Each individual modal oscillation is associated with its own surface

source distribution which follows from (4) using (8) and (9) with

everything specified in terms of A ~ given in (3). The equivalent

current density representing the applicator can be modeled as the

superposition of all individual modal source distributions.

It must be emphasized that this optimization procedure provides

a theoretical limit for deep heating. In practice, no actual applicator

would be able to generate as good a power pattern, We have pre-

sented instead a “benchmark” for judging electromagnetic hy -

perthermia feasibility. Just as with thermodynamic efficiency

cycles, knowledge of ideal heating limits provides essential infor-

mation for designing practical medical treatment devices.
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